
APPL 1.0 Documentation

APPL (Avasaram Platform Programming Language) is a powerful language used to extend the

built in functionalities of the Avasaram platform. It could be used to create advanced filters and

advanced display columns. Language syntax for APPL is very similar to the popular language

JAVA.

APPL scripts must start with a curly brace ”{” and end with a curly brace “}”. All the statements in the

script must end with a semicolon “;”.

A sample script for APPL filters to find stocks with last traded price greater than 10.

{

stock.getLast() > 10;

}

A sample script to add an APPL display column of maximum return probability.

{

strategy.getMaxReturnProbability();

}

APPL Core Objects and Classes

Object/Class Description

strategy The strategy object which contains information about the strategy being

accessed.

Example to get the ticker symbol of the underlying stock.
strategy.getTicker()

stock The underlying object for the strategy.
Example to get the last traded price.
stock.getLast()

longLegOne The first long leg associated with the strategy. In case of a married put
strategy this is the put option purchased to protect the stock. Presence of this

object depends on the strategy that is being accessed.

Example to get the option symbol.
longLegOne.getOptionSymbol()

shortLegOne The first short leg associated with the strategy. In case of a covered call
strategy this is the call option sold against the stock. Presence of this object
depends on the strategy that is being accessed.

Example to get the option symbol.
shortLegOne.getOptionSymbol()

longLegTwo The second long leg associated with the strategy. Presence of this object

depends on the strategy that is being accessed. This is usually present in a
multi leg strategy like butterflies and condors.

Example to get the option symbol.
shortLegOne.getOptionSymbol()

shortLegTwo The second short leg associated with the strategy. Presence of this object
depends on the strategy that is being accessed. This is usually present in a
multi leg strategy like butterflies and condors.

Example to get the option symbol.
shortLegOne.getOptionSymbol()

Util This is a utility class containing commonly used methods.

Math Utility class containing mathematical functions.

Example to get the square root.
Math.sqrt(4)

TA Technical Analysis class containing TA specific functions.

Example to check for existence of Bullish DOJI Pattern in last 20 days
TA.hasPattern(CandleStickPattern.DOJI, Bias.BULLISH,20);

Filters using APPL script

Advanced filters could be made using APPL scripts. The APPL expression used for building the filter

must evaluate to a Boolean value. To add a new APPL filter click on the “Add APPL Filter” button

from the custom screener. See the figure below.

Figure below shows an example APPL filter which returns strategies with Annual Return > 10

After entering the script click the validate button to check for any error. After validation click save to

add the filter to your screener.

Examples

1. Filter to retrieve strategy data which has its stock with last traded price between 10 and 50.

{

stock.getLast() > 10 && stock. getLast() < 50;

}

2. Filter to retrieve a stock which has an occurrence of Candle stick pattern “Two Crows” in last

20 days.

{

TA.hasPattern(CandleStickPattern.TWO_CROWS,Bias.BEARISH,20);

}

3. Filter to find a Delta Neutral position for calendar spread.

{

 shortDelta = shortLegOne.getDelta();

 longDelta = longLegOne.getDelta();

 netDelta = longDelta - shortDelta;

 netDelta < 0.02;

}

Display Column using APPL script

Display columns could be added to the screener results easily by creating an APPL script. Click on the

“Add APPL Column” to create a new display column. See the figure below.

After entering the script click the “validate and preview” button to check for any errors and preview

results. After validation click “save” to add the display column to your screener. Unlike the filters the

script for the display column does not have to evaluate to boolean.

Figure below shows the APPL script for display column which shows a simple annualized return.

Examples

1. APPL Script to create a display column to create a simple annualized rate of return for a

covered call strategy.
{

maxRetPcntage = strategy.getMaxReturnPercentage();

returnPeriod = shortLegOne.getOptionExpiryInDays();

annualReturn = (maxRetPcntage/returnPeriod)*365;

Math.convertToTwoDigitPrecision(annualReturn);

}

2. APPL Script to create a display column showing Net Delta for calendar spread.

{

 shortDelta = shortLegOne.getDelta();

 longDelta = longLegOne.getDelta();

 netDelta = longDelta - shortDelta;

 Math.convertToTwoDigitPrecision(netDelta);

}

Available methods for Object : strategy

Function Name Return
Type

Description

getTicker() String Gets the ticker symbol associated with the stock of

this strategy.

Example Usage:
strategy.getTicker();

getStrategyShortName() String Gets the short name for the strategy.

Example Usage:
strategy.getStrategyShortName();

getMaxReturnPercentage() double Gets the maximum return in percentage

getMaxReturn() double Gets the maximum return

getMaxRisk() double Gets the maximum risk for the strategy

getMaxReturnProbability() double Gets the probability of maximum return

getAnyReturnProbability() double Gets the probability of any return

Available methods for Object : stock

Function Name Return
Type

Description

getLast() double Gets the last traded price

Example Usage:
stock.getLast();

getOpen() double Gets the opening price

Example Usage:
stock.getOpen();

getHigh() double Gets the high price

getLow() double Gets the low price

getBid() double Gets the bid price

getBidSize() double Gets the bid size

getAsk() double Gets the ask price

getAskSize() double Gets the ask size

getWkLow52() double Gets the 52 Week low

getWkHigh52() double Gets the 52 Week High

getAvgVolume() long Gets the average volume

getStockName() String Gets the Name of the stock

getVolumeTraded() long Gets the volume traded

getAtmCallVolatility() double Get the At the Money Volatility of the Call Options

getAtmPutVolatility() double Get the At the Money Volatility of the Put Options

Available methods for Objects : longLegOne/longLegTwo/shortLegOne/shortLegTwo

Function Name Return
Type

Description

getExpiry() String Gets the expiry of the option as a String

Example Usage:
longLegOne.getExpiry();

OR

longLegTwo.getExpiry();

OR

shortLegOne.getExpiry();

OR

shortLegTwo.getExpiry();

getOptionExpiryInDays() long Gets the expiry of the option in days

getOptionSymbol() String Gets the option symbol

getOptionType() String Gets the type of Option. ”C” for Call and “P” for Put

isITM() boolean Returns true if the option is in the money

getImpliedVolatility() double Gets the implied volatility for the option

getStrike() double Gets the Strike of this option

getBid() double Gets the bid price for the option.

getAsk() double Gets the ask price for the option

getLast() double Gets the last traded price for the option.

getVolume() long Gets the trade volume for the option.

getOpenInterest() long Gets the open interest for the option.

getDelta() double Gets the delta for the option.

getGamma() double Gets the gamma for the option

getTheta() double Gets the theta for the option.

getVega() double Gets the vega for the option.

getRho() double Gets the rho for the option.

Available methods for Class : Math

Function Name Return
Type

Description

abs(double a) double Returns the absolute value of a double value.

Example Usage:
Math.abs(12);

acos(double a) double Returns the arc cosine of a value; the returned
angle is in the range 0.0 through pi
Example Usage:
Math.acos(12);

asin(double a) double Returns the arc sine of a value; the returned
angle is in the range -pi/2 through pi/2.

atan(double a) double Returns the arc tangent of a value; the returned
angle is in the range -pi/2 through pi/2.

cbrt(double a) double Returns the cube root of a double value

ceil(double a) double Returns the smallest (closest to negative
infinity) double value that is greater than or
equal to the argument and is equal to a
mathematical integer.

cos(double a) double returns the trigonometric cosine of an angle.

cosh(double a) double Returns the hyperbolic cosine of a double value.

exp(double a) double Returns Euler's number e raised to the power of

a double value.

log(double a) double Returns the natural logarithm (base e) of a
double value.

log10(double a) double Returns the base 10 logarithm of a double value

pow(double a) double Returns the value of the first argument raised to
the power of the second argument.

sin(double a) double Returns the trigonometric sine of an angle.

sqrt(double a) double Returns the correctly rounded positive square
root of a double value

tan(double a) double Returns the trigonometric tangent of an angle.

convertToTwoDigitPrecision(double a) double Converts the number to have a two digit
precision after the decimal

convertToThreeDigitPrecision(double a) double Converts the number to have a three digit
precision after the decimal

Available methods for Class : TA

Function Name Return
Type

Description

hasPattern(

CandleStickPattern.type,

Bias.type,
int noOfDays
)

boolean Check for the existence of the CandleStick pattern with the
Bias (Bullish,Bearish) in the specified days.

Example Usage:
TA.hasPattern(CandleStickPattern.DOJI,

Bias.BULLISH,20);

See below for the complete list of CandleStick Pattern types

hasPositiveSMACrossover(
 int lineOnePeriod,
 int lineTwoPeriod,
 int days

)

boolean Checks if SMA line-1 Crossed SMA line-2 towards positive
(Upward) direction.

hasNegativeSMACrossover(
int lineOnePeriod,
int lineTwoPeriod,
int days
)

boolean Checks if SMA line-1 Crossed SMA line-2 towards negative
(Downward) direction.

hasSMAAboveStock(
 int period,
 int noOfDays

)

boolean Checks if SMA line is above the stock line in the specified
days.

hasSMABelowStock(
 int period,
 int noOfDays

)

boolean Checks if SMA line is below the stock line in the specified
days.

hasPositiveEMACrossover(
int lineOnePeriod,
int lineTwoPeriod,
int days

boolean Checks if EMA line-1 Crossed EMA line-2 towards positive
(Upward) direction.

)

hasNegativeEMACrossover(
int lineOnePeriod,

int lineTwoPeriod,
int days
)

boolean Checks if EMA line-1 Crossed EMA line-2 towards negative
(Downward) direction.

hasEMAAboveStock(
 int period,
 int noOfDays
)

boolean Checks if EMA line is above the stock line in the specified
days.

hasEMABelowStock(
 int period,
 int noOfDays

)

boolean Checks if EMA line is below the stock line in the specified
days.

hasWillamsRCrossAbove(
int period,
double value,

int lastNoOfDays
)

boolean Checks if WillamsR line with period “period” crossed above
the value in the specified days.

hasWillamsRCrossBelow(
int period,
double value,
int lastNoOfDays

)

boolean Checks if WillamsR line with period “period” crossed below
the value in the specified days.

hasWillamsRAbove(

int period,
double value,
int lastNoOfDays
)

boolean Checks if WillamsR line with period “period” is above the

value in the specified days.

hasWillamsRBelow(

int period,
double value,
int lastNoOfDays
)

boolean Checks if WillamsR line with period “period” is below the

value in the specified days.

hasRSICrossAbove(
int period,
double value,

int lastNoOfDays

)

boolean Checks if RSI line with period “period” crossed above the
value in the specified days.

hasRSICrossBelow(
int period,
double value,
int lastNoOfDays

)

boolean Checks if RSI line with period “period” crossed below the
value in the specified days.

hasRSIAbove(
int period,
double value,

boolean Checks if RSI line with period “period” is above the value in
the specified days.

int lastNoOfDays
)

hasRSIBelow(

int period,
double value,
int lastNoOfDays
)

boolean Checks if RSI line with period “period” is below the value in

the specified days.

hasMFICrossAbove(
int period,
double value,

int lastNoOfDays
)

boolean Checks if MFI line with period “period” crossed above the
value in the specified days.

hasMFICrossBelow(

int period,
double value,
int lastNoOfDays
)

boolean Checks if MFI line with period “period” crossed below the

value in the specified days.

hasMFIAbove(
int period,
double value,
int lastNoOfDays
)

boolean Checks if MFI line with period “period” is above the value in
the specified days.

hasMFIBelow(

int period,
double value,
int lastNoOfDays

)

boolean Checks if MFI line with period “period” is below the value in

the specified days.

hasMACDAboveSignal(
int fastPeriod,
int slowPeriod,

int signalPeriod,
int lastNoOfDays
)

boolean Checks if MACD Crossed above the signal line in the specified
days.

hasMACDBelowSignal(
int fastPeriod,
int slowPeriod,
int signalPeriod,

int lastNoOfDays)

boolean Checks if MACD Crossed below the signal line in the specified
days.

hasTouchedUpperBBand(
int period,
int deviation,
int lastNoOfDays
)

boolean Checks if the underlying’s Closing price touched the Upper
Bollinger Band in the specified days.

hasTouchedLowerBBand(
int period,
int deviation,
int lastNoOfDays
)

boolean Checks if the underlying’s Closing price touched the Lower
Bollinger Band in the specified days.

probabilityStockCrossAbove(
double price,
int nofDays

)

double Returns the probability of stock crossing above the price at
the specified number of days.

probabilityStockCrossBelow(
double price,
int nofDays
)

double Returns the probability of stock crossing below the price at
the specified number of days.

probabilityStockTouch(
double priceOne,

int nofDays
)

double Returns the probability of stock touching the price in
specified number of days.

probabilityStockBetween(

double priceOne,
double priceTwo,
int nofDays
)

double Returns the probability of stock being in the range at the

specified number of days.

probabilityStockCrossAbove(
double price,
double volatility,
int nofDays
)

double Returns the probability of stock crossing above the price at
the specified number of days.

probabilityStockCrossBelow(
double price,
double volatility,
int nofDays
)

double Returns the probability of stock crossing below the price at
the specified number of days.

probabilityStockTouch(

double priceOne,
double volatility,
int nofDays
)

double Returns the probability of stock touching the price in

specified number of days.

probabilityStockBetween(

double priceOne,
double priceTwo,
double volatility,
int nofDays
)

double Returns the probability of stock being in the range at the

specified number of days.

CandleStick Pattern Types

Type Description

TWO_CROWS Two Crows Pattern.
Example Usage: CandleStickPattern.TWO_CROWS

THREE_BLACK_CROWS Three Black Crows Pattern

THREE_INSIDE_UP_DOWN Three Inside Up/Down Pattern

THREE_LINE_STRIKE Three Line Strike Pattern

THREE_OUTSIDE Three Outside Up/Down Pattern

THREE_STARS_IN_SOUTH Three Stars In The South Pattern

THREE_WHITE_SOLDIERS Three Advancing White Soldiers Pattern

ABANDONED_BABY Abandoned Baby Pattern

ADVANCE_BLOCK Advance Block Pattern

BELT_HOLD Belt Hold Pattern

BREAKAWAY Breakaway Pattern

CLOSING_MARUBOZU Closing Marubozu Pattern

CONCEAL_BABY_SWALL Concealing Baby Swallow Pattern

COUNTERATTACK Counterattack Pattern

DARK_CLOUD_COVER Dark Cloud Cover Pattern

DOJI Doji Pattern

DOJI_STAR Doji Star Pattern

DRAGONFLY_DOJI Dragon Fly Doji Pattern

ENGULFING Engulfing Pattern

EVENING_DOJI_STAR Evening Doji Star Pattern

EVENING_STAR Evening Star Pattern

GAP_SIDE_SIDE_WHITE Up/Down Gap Side-By-Side White Lines

GRAVE_STONE_DOJI Gravestone Doji

HAMMER Hammer Pattern

HANGINGMAN Hanging Man Pattern

HARAMI Harami Pattern

HARAMICROSS Harami Cross Pattern

HIGHWAVE High Wave Pattern

HIKKAKE Hikkake Pattern

HIKKAKEMOD Hikkake Modified Pattern

HOMING_PIGEON Homing Pegion Pattern

IDENTICAL_THREE_CROWS Identical Three Crows Pattern

INNECK In Neck Pattern

INVERTED_HAMMER Inverted Hammer Pattern

KICKING Kicking Pattern

KICKING_BY_LENGTH Kicking - bull/bear determined by the longer marubozu Pattern

LADDERBOTTOM Ladder Bottom Pattern

LONGLEGGED_DOJI Long Legged Doji Pattern

LONGLINE Long line Pattern

MARUBOZU Marubozu Pattern

MATCHING_LOW Matching Low Pattern

MATHOLD Mat Hold Pattern

MORNING_DOJI_STAR Morning Doji Star Pattern

MORNINGSTAR Morning Star Pattern

ONNECK On Neck Pattern

PIERCING Piercing Pattern

RICKSHAW_MAN Rickshaw Man Pattern

RISEFALL_THREE_METHODS Rising/Falling Three Methods Pattern

SEPARATING_LINES Separating Lines Pattern

SHOOTING_STAR Shooting Star Pattern

SHORTLINE Short Line Pattern

SPINNING_TOP Spinning Top Pattern

STALLED_PATTERN Stalled Pattern Pattern

STICKSANDWICH Stick Sandwich Pattern

TAKURI Takuri Pattern

TASUKIGAP Tasuki Gap Pattern

THRUSTING Thrusting Pattern

TRISTAR Tristar Pattern

UNIQUE_THREE_RIVER Unique Three River Pattern

UPSIDEGAP_TWO_CROWS Upside Gap Two Crows Pattern

XSIDEGAP3METHODS Upside/Downside Gap Three Methods

Bias Types

BULLISH Bullish Direction

Usage: Bias.BULLISH

Example
hasPattern(CandleStickPattern.DOJI, Bias.BULLISH,20);

BEARISH Bearish Direction

NEUTRAL Neutral Direction

APL Language Elements

Item Description

Comments Also specified using //, e.g.
// This is a comment

Multiple lines comments are specified using /*...*/, e.g.
/* This is a
 multi-line comment */

Identifiers / variables Must start with a-z, A-Z. Can then be followed by 0-9, a-z, A-Z, _ or $. e.g.

 Valid: var1,a99

 Invalid: 9v,!a99,1$

Variable names are case-sensitive, e.g. var1 and Var1 are different

variables.

N.B. the following keywords are reserved, and cannot be used as a
variable name or property when using the dot operator:

or, and, eq, ne, lt, gt, le, ge, div, mod, not, null, true, false, new.

Scripts A script in APL is made up of zero or more statements.

Statements A statement can be the empty statement, the semicolon (;) , block,
assignment or an expression. Statements are optionally terminated with a
semicolon.

Block A block is simply multiple statements inside curly braces ({, }).

Assignment Assigns the value of a variable (var = 'a value')

Method calls Calls a method of an object, e.g.
Math.sqrt(4)

will call the sqrt method from Math object.

Literals

Item Description

Integer Literals 1 or more digits from 0 to 9

Floating point Literals 1 or more digits from 0 to 9, followed by a decimal point and then one or
more digits from 0 to 9.

String literals Can start and end with " delimiters, e.g.

"Hello world"
The escape character is \; it only escapes the string delimiter

Boolean literals The literals true and false can be used, e.g.
val1 == true

Null literal The null value is represented as in java using the literal null, e.g.
val1 == null

Array literal A [followed by one or more expressions separated by , and ending with],
e.g.

[1, 2, "three"]

This syntax creates an Object[].

APPL will attempt to strongly type the array; if all entries are of the same

class or if all entries are Number instance, the array literal will be an

MyClass[] in the former case, a Number[] in the latter case.

Furthermore, if all entries in the array literal are of the same class and
that class has an equivalent primitive type, the array returned will be a
primitive array. e.g. [1, 2, 3] will be interpreted as int[].

Operators

Operator Description

Boolean and The usual && operator can be used, e.g.
cond1 && cond2

Boolean or The usual || operator can be used

cond1 || cond2

Boolean not The usual ! operator can be used e.g.

!cond1

Bitwise and The usual & operator is used, e.g.

33 & 4

, 0010 0001 & 0000 0100 = 0.

Bitwise or The usual | operator is used, e.g.

33 | 4

, 0010 0001 | 0000 0100 = 0010 0101 = 37.

Bitwise xor The usual ^ operator is used, e.g.

33 ^ 4

, 0010 0001 ^ 0000 0100 = 0010 0100 = 37.

Bitwise complement The usual ~ operator is used, e.g.

~33

, ~0010 0001 = 1101 1110 = -34.

Ternary conditional ?: The usual ternary conditional operator condition ? if_true : if_false operator
can be used ,e.g.

val1 ? val1 : val2

Equality The usual == operator can be used. For example

val1 == val2

1. null is only ever equal to null, that is if you compare null to any non-

null value, the result is false.
2. Equality uses the java equals method

Inequality The usual != operator can be. For example
val1 != val2.

Less Than The usual < operator can be used .For example
val1 < val2

Less Than Or Equal To The usual <= operator can be used. For example

val1 <= val2

Greater Than The usual > operator can be used as well as the abbreviation gt. For
example

val1 > val2

Greater Than Or Equal
To

The usual >= operator can be used. For example

val1 >= val2

Addition The usual + operator is used. For example

val1 + val2

Subtraction The usual - operator is used. For example

val1 - val2

Multiplication The usual * operator is used. For example

val1 * val2

Division The usual / operator is used. For example

val1 / val2

Modulus (or
remainder)

The % operator is used
5 % 2

Negation The unary - operator is used. For example

-12

Array access Array elements may be accessed using square brackets e.g.

arr1[0]

Conditionals

Operator Description

if Classic, if/else statement, e.g.

if ((x * 2) == 5) {

 y = 1;

} else {

 y = 2;

}

